Hand Posture and Face Recognition Using a Fuzzy-Rough Approach
نویسندگان
چکیده
A novel algorithm based on fuzzy-rough sets is proposed for the recognition of hand postures and face. Features of the image are extracted using the computational model of the ventral stream of visual cortex. The recognition algorithm translates each quantitative value of the feature into fuzzy sets of linguistic terms using membership functions. The membership functions are formed by the fuzzy partitioning of the feature space into fuzzy equivalence classes, using the feature cluster centers generated by the subtractive clustering technique. A rule base generated from the lower and upper approximations of the fuzzy equivalence classes classifies the images through a voting process. Using genetic algorithm, the number of features required for classification is reduced by identifying the predictive image features. The margin of classification, which is a measure of the discriminative power of the classifier, is used to ensure the quality of classification process. The fitness function suggested assists in the feature selection process without compromising on the classification accuracy and margin. The proposed algorithm is tested using two hand posture and three face datasets. The algorithm provided good classification accuracy, at a less computational effort. The selection of relevant features further reduced the computational costs of both feature extraction and classification algorithms, which makes it suitable for real-time applications. The performance of the proposed algorithm is compared with that of support vector machines.
منابع مشابه
Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملاستفاده از تحلیل پوششی دادههای ناهموار برای ارزیابی تأمینکنندگان، مطالعه موردی: گروه صنعتی ایران ترانسفو
Im this paper, the performance of suppliers is evaluated based on their efficiencies. Evaluation environment is not always precise and we may face imprecise for evaluation indexes values. In this situation, traditional and certain models cannot be employed. For overcoming uncertainty problem, there are different models such as stochastic, statistical, Rough, Fuzzy, etc for solving uncertainty e...
متن کاملFuzzy Hand Gesture Recognition Based Human Computer Interface Intelligent System
In early days computers are operated by various interface devices, which are developed by the humans to interact with the computer. Starting from Punch-cards to touch screens man have changed the human life into an unimaginable state, right now we are stepping into an another era of computer technology, where the system makes things easier and simple and more powerful. A novel method of dynamic...
متن کاملMulti-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملHand Posture Classification and Recognition using the Modified Census Transform
Developing new techniques for human-computer interaction is very challenging. Vision-based techniques have the advantage of being unobtrusive and hands are a natural device that can be used for more intuitive interfaces. But in order to use hands for interaction, it is necessary to be able to recognize them in images. In this paper, we propose to apply to the hand posture classification and rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Humanoid Robotics
دوره 7 شماره
صفحات -
تاریخ انتشار 2010